Motivation and Background Upgrades to GS2 Benchmarks Other Studies Conclusions

Upgrades of GS2 for stellarators and initial gyrokinetic results

Jessica A. Baumgaertel¹

WPI Workshop, Vienna, Austria

April 7th, 2011

G. W. Hammett, D. R. Mikkelsen, et al

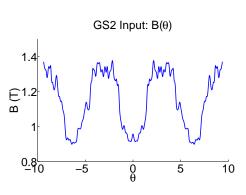
¹Princeton University, Princeton Plasma Physics Laboratory ← ♠ → ← ♣ → ♠ ♣ | ♣ | ♣ | ◆ △ ◆

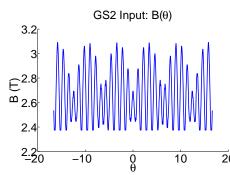
- Motivation and Background
- Upgrades to GS2
 - Trapped Particle Treatment
 - Geometry Input
- Benchmarks
 - GS2 vs. FULL Benchmark
 - GS2 vs. GENE benchmark
- Other Studies
 - Electromagnetic
 - Nonlinear
 - How do we compare different devices?
- Conclusions
 - Summary
 - Future Work

Turbulence should be studied in stellarators

- Modern stellarators are optimized for neoclassical transport
- Turbulence could become more important
- Stellarators have large parameter space of configurations
 - opportunity for optimizing for turbulence

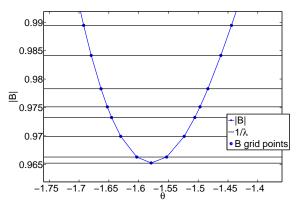
Gyrokinetics in stellarators is an active area of research

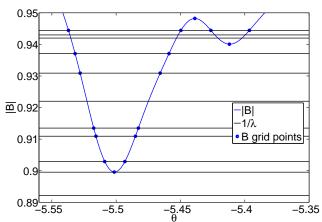

- FULL: Linear eigenvalue code
 - G. Rewoldt compared nine configurations for linear stability (PoP 12, 102512 (2005))
 - Also simulated studied ITG and TEM stability in an equilibrium produced as part of the NCSX design: QAS3-C82 (PoP 6, 4705 (1999))
- GENE: Nonlinear code
 - F. Jenko and P. Xanthopoulos have linearly and nonlinearly studied the ITG mode in W7-X plasmas (PoP 14, 042501 (2007), PRL 99, 035002 (2007))
 - H. Mynick and P. Xanthopoulos are using GENE to investigate optimization of stellarators for turbulent transport (PRL 105, 095004 (2010))
- GKV-X: nonlinear code, adiabatic electrons
 - Watanabe, Nunami, Sugama, Tanaka simulating LHD plasmas (Plasma and Fusion Research 6, 1403001 (2011))


GS2 was briefly used for stellarators a few years ago

- Original studies by Belli/Dorland: FULL/GS2 NCSX benchmark
 - needed reproduction to resolve questions of geometry normalizations
 - my initial thesis research
- Guttenfelder: HSX linear studies

- Motivation and Background
- Upgrades to GS2
 - Trapped Particle Treatment
 - Geometry Input
 - 3 Benchmarks
 - GS2 vs. FULL Benchmark
 - GS2 vs. GENE benchmark
- Other Studies
 - Electromagnetic
 - Nonlinear
 - How do we compare different devices?
 - Conclusions
 - Summary
 - Future Work


Initial W7-X studies revealed numerical instability/bug related to complicated |B| structure



The grid generator should require coupled θ and λ grids

• Original velocity integral required a $v_{||}/v = \sqrt{1 - \lambda B(\theta)} = 0$ at each theta point (where $\lambda = \mu/E = 1/B_{tp}$).

GS2 grid generator improperly handles pitch angles for complicated geometries

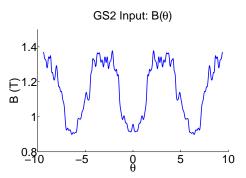
Trapped particle treatment now allows for these more flexible grids

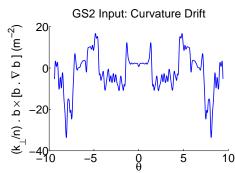
- Allows for multiple "totally trapped pitch angles" in a single well
- Treats barely passing or barely trapped particles consistently
- Fixed bugs in handling the boundary conditions for trapped particles at turning points.
- Now allows the pitch angle grid to be independent of the spatial theta grid.
 - $v_{||}/v = 0$ grid point not required at each theta grid point.
- All of these changes are buried in GS2's implicit solver
- Currently writing a replacement for rungridgen to be more robust.

- Motivation and Background
- Upgrades to GS2
 - Trapped Particle Treatment
 - Geometry Input
 - 3 Benchmarks
 - GS2 vs. FULL Benchmark
 - GS2 vs. GENE benchmark
- Other Studies
 - Electromagnetic
 - Nonlinear
 - How do we compare different devices?
 - Conclusions
 - Summary
 - Future Work

New 3D geometry builder chain for GS2

- Starting from a VMEC 3D MHD equilibrium. . .
- Historically:
 - Terpsichore
 - Boozer coordinate transformation
 - VVBAL
 - Single flux tube ballooning coefficients
 - Radial coordinate: normalized poloidal flux
- New:
 - GIST²
 - Used for GENE 3D geometry
 - Radial coordinate: either poloidal or toroidal flux
 - Tested: reproduces VVBAL geometry

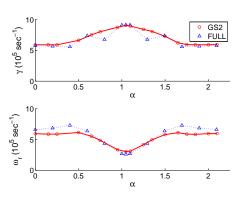

- Motivation and Background
- Upgrades to GS2
 - Trapped Particle Treatment
 - Geometry Input
- 3 Benchmarks
 - GS2 vs. FULL Benchmark
 - GS2 vs. GENE benchmark
- Other Studies
 - Electromagnetic
 - Nonlinear
 - How do we compare different devices?
- Conclusions
 - Summary
 - Future Work

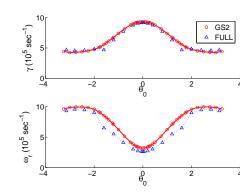

GS2 vs. FULL

- In 2000, E. Belli and W. Dorland conducted the first linear GS2 studies with non-axisymmetric geometries (NCSX QAS3-C82)
- My initial thesis research was redoing the study
 - troubleshooting geometry chain, reproducing geometry input
 - bug fixes (Guttenfelder)
 - clarifying definitions of parameters
 - re-benchmarking with the modern GS2
 - newer energy grid
 - my trapped particle modifications
- Still matches!
 - results will be published soon

NCSX QAS3-C82: 990 θ and 90 λ points

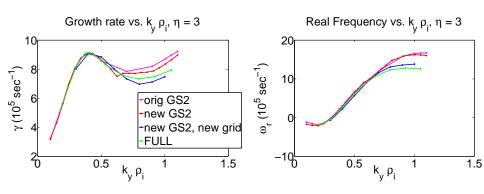
•
$$s = 0.875$$
 , $\alpha = \pi/3$, $\theta_0 = 0$

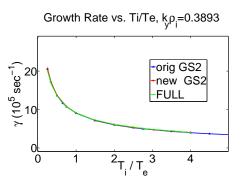


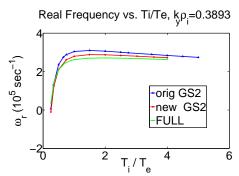


Test case: ITG with kinetic electrons

- Radial variable: Ψ_n
- $s = \Phi_T/\Phi_0 = 0.875$: very near the edge
- q = 2.118
- $T_i/T_e = 1.0$
- $a/L_T = 39.288$
- $a/L_n = 13.096$
- a = 0.352m
- delt = 0.005
- \bullet Time: linear run with 1 k_y about 7 minutes with 24 processors

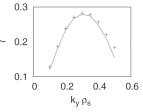

GS2 and FULL agree well in lpha and $heta_0$ scan

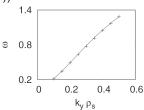



- $\alpha = \zeta q\theta$ scan held $\theta_0 = 0$
- θ_0 scan held $\alpha = 0$

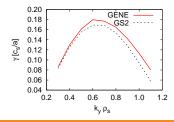
GS2 and FULL agree well in $k_y \rho_i$ scan

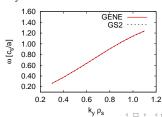
Ti/Te agreement improved with modern GS2

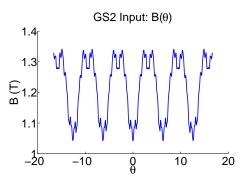

- Motivation and Background
- Upgrades to GS2
 - Trapped Particle Treatment
 - Geometry Input

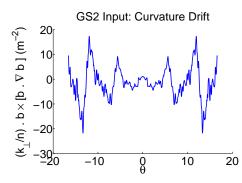

Benchmarks

- GS2 vs. FULL Benchmark
- GS2 vs. GENE benchmark
- Other Studies
 - Electromagnetic
 - Nonlinear
 - How do we compare different devices?
 - Conclusions
 - Summary
 - Future Work


GS2/GENE NCSX-Sym matches with tokamak precision

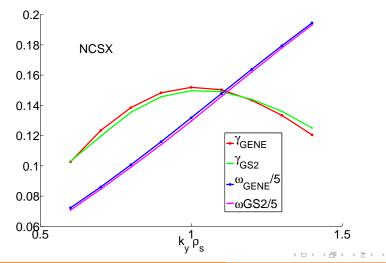

Tokamak (PoP 15, 122108 (2008)):

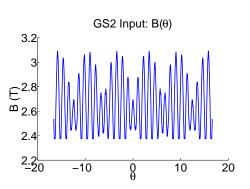

NCSX-Sym benchmark tests 3D geometry chain

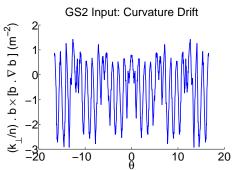


NCSX-3D Geometry Coefficients: 990 θ and 51 λ points

• Future work: reduce θ resolution by bounce/orbit averaging coefficients over θ and/or λ grid?

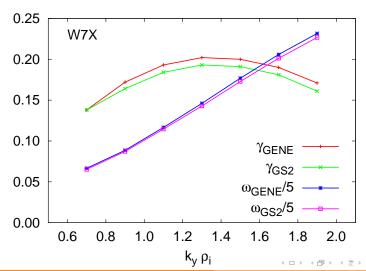



Test case: ITG with adiabatic electrons

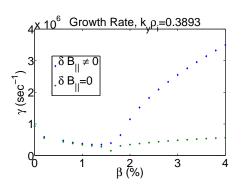

- Radial variable: \sqrt{s}
- $s = \Phi_T / \Phi_{Ta} = 0.515$
- q = 2.162
- a = 0.345m
- $T_i/T_e = 1.0$
- $a/L_T = 3.0$
- $a/L_n = 0.0$
- *delt* = 0.005
- \bullet Time: linear run with 9 k_y s, about 4 minutes with 48 processors

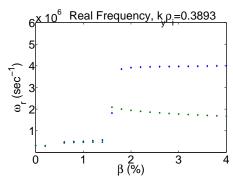
GS2 and GENE agree well for NCSX-3D $k_y \rho_i$ spectrum

W7-X Geometry: 1464 θ and 33 λ points



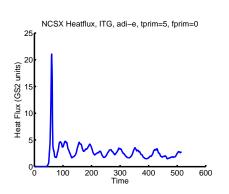
Test case: ITG with adiabatic electrons

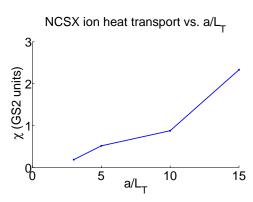

- Radial variable: \sqrt{s}
- $s = \Phi_T/\Phi_{Ta} = 0.2$
- averaged minor radius a = 0.5m
- $T_i/T_e = 1.0$
- $a/L_T = 3.0$
- $a/L_n = 0.0$
- delt = 0.005
- \bullet Time: linear run with 7 k_v s, about 20 minutes with 48 processors


GS2 and GENE agree well for W7-X $k_y \rho_i$ spectrum

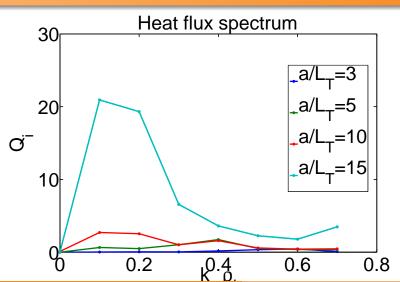
- Motivation and Background
- 2 Upgrades to GS2
 - Trapped Particle Treatment
 - Geometry Input
- 3 Benchmarks
 - GS2 vs. FULL Benchmark
 - GS2 vs. GENE benchmark
- Other Studies
 - Electromagnetic
 - Nonlinear
 - How do we compare different devices?
 - Conclusions
 - Summary
 - Future Work

Initial EM results




- Motivation and Background
- 2 Upgrades to GS2
 - Trapped Particle Treatment
 - Geometry Input
- 3 Benchmarks
 - GS2 vs. FULL Benchmark
 - GS2 vs. GENE benchmark
- Other Studies
 - Electromagnetic
 - Nonlinear
 - How do we compare different devices?
 - Conclusions
 - Summary
 - Future Work

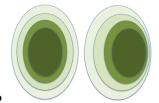
Parameters


- NCSX eqs3.01.01: same geometry as GS2/GENE linear study
- 292 theta gridpoints
- 15 trapped pitch angles
- 8 k_y , 21 k_x
- Time: \sim 27 hours on 48 processors

First GS2 nonlinear stellarator results

First GS2 nonlinear stellarator results

- Motivation and Background
- Upgrades to GS2
 - Trapped Particle Treatment
 - Geometry Input
- 3 Benchmarks
 - GS2 vs. FULL Benchmark
 - GS2 vs. GENE benchmark
- Other Studies
 - Electromagnetic
 - Nonlinear
 - How do we compare different devices?
 - Conclusions
 - Summary
 - Future Work


Appropriate metric of comparison between devices: χ_{ITER} ?

• χ_{ITER} is invariant to $\rho = F(\rho')$ with the ITER standard definition:

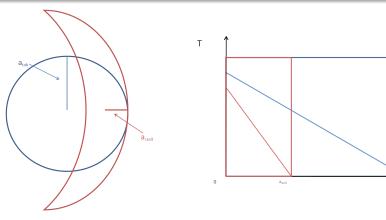
•
$$\frac{3}{2} \frac{\partial}{\partial t} (nT) = \frac{1}{V'} \frac{\partial}{\partial \rho} [V' \langle |\nabla \rho|^2 \rangle \chi_{ITER} n \frac{\partial T}{\partial \rho}] + P$$

Better metric of comparison between devices: $\langle |\nabla \rho|^2 \rangle \chi_{ITER}$?

• Because $\frac{1}{\tau_E} \sim \langle |\nabla \rho|^2 \rangle \chi$, a better metric is $\langle |\nabla \rho|^2 \rangle \chi$:

- ∇T increases locally, $|\nabla \rho|^2$ increases, decreasing τ_E .
- This isn't invariant to ρ , so should use same definition: $\rho = \sqrt{\Phi_T/\Phi_{Ta}}$ (GENE standard, GS2 able), $\rho \in [0,1]$.

Even better metric of comparison between devices: $R\langle a\kappa\rangle\langle |\nabla\rho|^2\rangle\chi_{ITER}$?


- Smaller $\langle |\nabla \rho|^2 \rangle \chi$ may mean much larger device, which could be undesirable due to cost.
- $\frac{\$}{Q} \sim \frac{S}{nT\tau_E} \sim \frac{R\langle a\kappa \rangle \langle |\nabla \rho|^2 \rangle \chi_{ITER}}{\beta}$: roughly compensates for size and cost (inverse of bang per buck)
 - S =surface area
 - assume fixed β (for now)

R/L_{Tcrit} preferred in tokamak comparisons

- $R/L_{Tcrit-TOK} \approx 2(1 + \frac{T_i}{T_e}) \approx 4$
- $T_0 = T_a e^{\int_0^a dr/L_T} \approx T_a e^{a/L_T} = T_a e^{\frac{a}{R}\frac{R}{L_T}} \approx T_a e^{4\frac{a}{R}}$
 - Smaller aspect ratio increases T_0
 - Higher R/L_{Tcrit} would also improve T_0
 - Stability is determined by R/L_T , but performance depends on a/L_T .

$$\bullet \ \frac{a}{L_T} \equiv -\frac{1}{T} \frac{\partial T}{\partial \rho}$$

Higher R/L_{Tcrit} might be offset by narrower plasma

- ullet This stellarator has a higher R/L_{Tcrit} than the tokamak but a smaller T_0 .
- R isn't as meaningful in stellarators

One could use: $R\langle a\kappa \rangle \langle |\nabla \rho|^2 \rangle \chi_{ITER}$ vs. a/L_T instead

- $R\langle a\kappa\rangle\langle |\nabla\rho|^2\rangle\chi_{ITER}$ captures heat transport and approximate cost for size and complexity
- $\frac{a}{L_T} \equiv -\frac{1}{T} \frac{\partial T}{\partial \rho}$ determines performance

- Motivation and Background
- Upgrades to GS2
 - Trapped Particle Treatment
 - Geometry Input
- 3 Benchmarks
 - GS2 vs. FULL Benchmark
 - GS2 vs. GENE benchmark
- Other Studies
 - Electromagnetic
 - Nonlinear
 - How do we compare different devices?
- Conclusions
 - Summary
 - Future Work

Summary

- GS2 has been upgraded to allow for more flexible grids
- New geometry framework for 3D GS2 simulations (GIST) was initially tested
- Linear benchmark with FULL was reproduced with modern GS2
- Successfully linearly benchmarked GS2 and GENE on initial ITG, adiabatic electron NCSX and W7-X cases
- ullet Demonstrated the need to include $\delta B_{||}$ in high eta studies
- Initial nonlinear NCSX studies are promising
- We discussed best comparison metrics between fusion devices

- Motivation and Background
- Upgrades to GS2
 - Trapped Particle Treatment
 - Geometry Input
- 3 Benchmarks
 - GS2 vs. FULL Benchmark
 - GS2 vs. GENE benchmark
- Other Studies
 - Electromagnetic
 - Nonlinear
 - How do we compare different devices?
- Conclusions
 - Summary
 - Future Work

Goals

- Complete new grid generator
- Further benchmarks with GENE in NCSX and W7-X geometries (ITG kinetic electron, collisions, EM, nonlinear)
- \bullet Extend nonlinear turbulence studies: reverse shear and shaping effects on ITG/TEM/ETG